approximations to δ^2/σ^2 when n = 15, 20. Table 5 is important; it contains 2D values of upper and lower 0.5%, 1.0%, 2.5%, and 5% points for the approximate distribution developed for δ^2/σ^2 . Table 6 lists the results of some approximations to d/σ by $(\chi_{\nu}^2/c)^{\alpha}$ for n = 5, 10, 20, 30, 50. Finally, Table 7 furnishes 4D values of the β_1 , β_2 differences that result from using a fixed λ for the $(\chi_{\nu}^2/c)^{\alpha}$ approximation to the distribution of δ_2^2/σ^2 , and from using a fixed λ for the $(\chi_{\nu}^2/c)^{\alpha}$ approximation to the distribution of d_2/σ , for n = 5, 7, 10(5)30, 40, 50.

J. E. Walsh

Operations Research Group System Development Corporation Santa Monica, California

60[K].-C. C. SEKAR, S. P. AGARWALA & P. N. CHAKRABORTY, "On the power function of a test of significance for the difference between two proportions," Sankhya, v. 15, 1955, p. 381–390.

The authors determine the power function of the following statistical test: a sample of size n is drawn from each of two binomial distributions with unspecified probabilities of success p_1 and p_2 , respectively. The null hypothesis is $H_0: p_1 =$ $p_2 = p$. For the two-sided test (alternative hypothesis: $p_1 < p_2$ or $p_1 > p_2$) at significance level α , the critical region is determined by the following conditions:

1) For a given total number r of successes in the two samples, the conditional probability of rejection under H_0 is $\leq \alpha$.

2) If the partition (a, r - a) of r successes is contained in the critical region and 0 < a < r - a, then the partition (a - 1, r - a + 1) is contained in the critical region.

3) If the partition (a, r - a) is contained in the critical region, the partition (r - a, a) is contained in the critical region.

A similar definition is used for the one-sided test of H_0 against the alternative $p_1 > p_2$. The critical region is determined using the exact conditional probabilities for these partitions given by S. Swaroop, [1].

The power function for the two-sided test is given to 5D for p_1 and $p_2 = .1(.1).9$; n = 5(5)20(10)50, 100, 200, and for a = .05. For the one-sided test the power function to 5D is given for the same levels of p_1 , p_2 and n, and for $\alpha = .025$.

The critical region used by the authors is the one defined for the exact test by E. S. Pearson, [2]. However, for small sample sizes the power differs considerably from Patnaik's determinations, which are based on an approximately derived critical region and which use a normal distribution approximation of the probabilities.

Examples of the use of the tables are included.

M. L. Epling

National Bureau of Standards

Washington, District of Columbia

^{1.} SATYA SWAROOP, "Tables of the exact values of probabilities for testing the significance of differences between proportions based on pairs of small samples," Sankhya, v. 4, 1938, p. 73-84.

^{2.} E. S. PEARSON, "The choice of statistical tests illustrated on the interpretation of data

classed in a 2 x 2 table," *Biometrika*, v. 34, 1947, p. 139-167. 3. P. B. PATNAIK, "The power function of the test between two proportions in a 2 x 2 table," *Biometrika*, v. 35, 1948, p. 157-175.